Vinyl-radical Rearrangements. E.S.R. Evidence for the Formation of Enol Radical Cations by the Protonation at Carbon of β -Hydroxyvinyl Radicals and for a 1,4-Hydrogen Shift in some β -Sulphur-substituted Analogues

Bruce C. Gilbert* and Adrian C. Whitwood

Department of Chemistry, University of York, Heslington, York YO1 5DD

E.s.r. results reveal the occurrence of acid-catalysed conversion of β -hydroxyvinyl radicals (from the reaction of 'OH and alkynes) into carbonyl-conjugated radicals in aqueous solution [*e.g.* RC(OH)=CR' into RC(O)CHR, R = alkyl, hydroxyalkyl]; it is suggested that the reaction involves the rapid protonation of the vinyl radical at carbon ($k \ge 5 \times 10^6$ dm³ mol⁻¹ s⁻¹) followed by deprotonation of the intermediate enol radical cation. The ease of hydrogen-atom abstraction by the vinyl radical itself from parent alkyne ($k \ge 1.6 \times 10^7$ dm³ mol⁻¹ s⁻¹ for but-2-yne-1,4-diol) is also noted.

Further examples of 1,4-hydrogen shifts are reported for β -sulphur-substituted vinyl radicals in which a capto-dative stabilized radical can thereby result.

It has been shown that the use of e.s.r. spectroscopy in conjunction with a rapid-flow system provides an excellent method for diagnosing the range of reactions undergone by vinyl radicals derived by addition of first-formed organic radicals to alkynes [reaction (1)].¹⁻⁴ Examples of the novel reactions revealed in this way include some 1,4-, 1,5-, and 1,6-hydrogen shifts¹⁻³ (which may be followed in appropriate examples by fragmentation or cyclization), as well as rapid addition to alkynes and intermolecular hydrogen abstraction⁴ [see *e.g.* reactions (2) and (3)]. This range of reactivity appears, at least in part, to reflect the exothermic nature of reactions in which a new C_{sp²}-H bond is formed.

It has previously been noted that a novel rearrangement, which appears to involve a 1,3-hydrogen shift, occurs during the reaction between HO[•] and but-2-yne-1,4-diol: ⁵ thus the detection of (3) along with (1) (the radical formed by direct hydrogenatom abstraction) suggests the prior formation of the adduct (2), with subsequent transformation [reaction (4)]. We here report an investigation of a number of hydroxyalkyl-substituted alkynes (including but-2-yne-1,4-diol) designed to reveal the nature of this process, as well as to study the competition between addition to the alkyne and C-H abstraction. Since most of our previous studies have involved α,β -dicarboxy-substituted vinyl radicals¹⁻⁵ we were also particularly interested to establish which, if any, of the unusual reactions noted above were peculiar to those radicals possessing the carboxyl substituents.

Results and Discussion

E.s.r. experiments typically involved the generation of 'OH (from the $Ti^{III}-H_2O_2$ redox couple) for reaction with the substrate, this being included in the third stream of a three-way continuous flow system in which the three streams are mixed *ca*. 30 ms before entry into the cavity of the spectrometer.¹ Changes in the e.s.r. spectra of the radicals detected under steady-state conditions were studied as a function of the nature and concentrations of substrates over a range of pH.

Reaction of But-2-yne-1,4-diol with 'OH.—Inclusion of this substrate (at a concentration \dagger of ca. 0.007 mol dm⁻³) in experiments with Ti^{III} and H₂O₂ at pH 1.5, led to the detection of the spectra ascribed to radicls (1) and (3) (see Figure 1 and Table 1). A variety of subsequent experiments was carried out in order to distinguish between different possible mechanisms to account for the formation of (3). These include, in addition to the possibility of a direct 1,3-shift, reaction sequences which involve the appropriate enol (4) (formed either via hydrogenatom abstraction or by one-electron reduction of the vinyl radical) and its subsequent reaction with 'OH (see Schemes 1(a) and 1(b): ref. 6 describes analogues of the dehydration reaction

[†] Concentrations quoted in the text are those after mixing, except where indicated otherwise.

Figure 1. E.s.r. spectra of HOCHC=CCH₂OH (\bullet) and HOCH₂COCHCH₂OH (\blacktriangle) obtained from 'OH and but-2-yne-1,4-diol at pH 1.45 ([H₂O₂] 0.017 [Ti^{III}] 0.0017 [alkyne] 0.007 mol dm⁻³).

of the α,β -dihydroxyalkyl radical), and a mechanism involving protonation of the intermediate vinyl radical at carbon (Scheme 2).

Initial experiments indicated that the rearrangement involves an acid-catalysed process. Thus, at pH 2, in experiments with [alkyne] 0.007 mol dm⁻³, only radical (1) was detected; the signal due to radical (3) grew in intensity when the pH was lowered, as shown in Figure 2. When this experiment was carried out with D₂O as solvent at low pH (*ca.* 0.6) the e.s.r. spectrum observed (Figure 3) confirmed that deuterium had been completely incorporated at the α -position of radical (3) [°C²H(CH₂OH)COCH₂OH has $a(\alpha^{-2}H)$ 0.29 mT, $a(\beta$ -H) 2.61 mT and $a(\gamma$ -H) 0.30 mT, exactly as expected from the parameters for (3)]. This observation eliminates intermolecular hydrogen-atom abstraction [Scheme 1(*a*)] as the source of radical (3).

Several observations appear to rule out Scheme 1(*b*) [and the formation of the enol (4)] as the source of (3). Firstly the ratio of [(1)]:[(3)] (*ca.* 1:1.75) did not decrease significantly when the concentration of Ti^{III} was increased from 1.5×10^{-3} to 5×10^{-3} mol dm⁻³ in experiments with [H₂O₂] 1.7×10^{-2} mol dm⁻³ and [alkyne] 7×10^{-3} mol dm⁻³ at pH 1.3 (contrast the

dramatic effect of increase in Ti^{III} on the concentration of enolderived radicals formed *via* reduction of α -carbonyl-substituted radicals ⁷); in addition the observation of (**3**) at *low* pH contrasts with the finding ⁷ that Ti^{III} is a less effective reductant for organic radicals as the pH is lowered. Secondly, no evidence was obtained for the radical (**5**), even under conditions (pH > 4) where this radical does not undergo acid-catalysed dehydration. [In addition it should be noted that when the radical (**5**) is generated as one of the species formed by reaction of 'OH with erythritol, addition of acid (to give pH 2.5) leads ⁶ mainly to the formation of the radical 'CH₂COCH(OH)CH₂OH by loss of hydroxide from the methylene carbon of (**5**): no trace of this species was detected in experiments with but-2-yne-1,4-diol].

Although Scheme 1(*a*) is ruled out as a source of detectable concentrations of (3), we investigated the possibility that intermolecular hydrogen-atom abstraction by the first-formed vinyl radical can occur *via* reaction with the parent alkyne-diol. Experiments in which [HOCH₂C=CCH₂OH] was varied at a given pH [in the range where rearrangement to (3) occurs] demonstrate that the ratio of [(1)]:[(3)] does indeed increase with increase in substrate concentration as would be anticipated on this basis (Figure 4). Extrapolation of these results to zero

Table 1, E.s.r. parameters of radicals formed	by reaction of 'OH wit	h a variety of alkynols."
---	------------------------	---------------------------

		Hyperfine splittings ^b			
Substrate	Radical	<i>a</i> (α-H)	<i>a</i> (β-H)	a(other)	g°
HOCH.C=CCH.OH	HOĊHC≡CCH₃OH (1)	1.76	0.68(2,β'-H)	0.09(OH)	2.002 90
	$HOCH_2C(O)\dot{CH}CH_2OH(3)$	1.89	2.61(2 H)	0.30(2 H)	2.003 90
HOCH ₂ C=CH	НОĊНС≡СН	$\begin{cases} 1.785\\ 0.98(\alpha') \end{cases}$		0.09(OH)	2.002 90
	$HOCH_2C(O)\dot{C}H_2$	1.97		0.225(2 H)	2.003 90
	HOCH ₂ CHCHO ⁴	1.76	{ 2.76(2 H) 0.13(CHO)		2.004 50
	носн₂с̀нсно [∉]	1.85	2.54(2 H) 0.15(CHO)		2.004 30
MeCH(OH)C≡CCH(OH)Me	MeĊ(OH)C≡CCH(OH)Me		{ 1.67(3 H) 0.675(B'-H)		2.003 00
	MeCH(OH)C(O)ĊHCH(OH)Me	1.88	ີ1.40	0.13	2.004 05
HOCH ₂ C≡CMe ^f	HOĊHC≡CMe	1.79	1.12(3,β'-H)	0.06(OH)	2.003 10
	HOCH, CHC(O)Me	1.89	2.585(2 H)	0.17(3 H)	2.004 00
	HOCH ₂ C(O)ĊHMe	1.89	2.245(3 H)	0.13(2 H)	2.003 90
HOCH₂CH₂C≡CH	НОĊНСН₂С≡СН	1.47	1.955		2.003 10
	HOCH₂ĊHC≡CH	$\begin{cases} 1.86 \\ 1.18(\alpha') \end{cases}$	1.96		2.002 60
	HOCH ₂ CH ₂ ĊHCHO ⁴	1.74	∫ 2.04(2 H) 0 165(CHO)		2.004 50
	НОСН₂СН₂ĊНСНО [€]	1.80	∫ 1.975(2 H)) 0.17(CHO)		2.004 30
	HOCH ₂ CH ₂ C(O)ĊH ₂	1.96	()	0.105(2 H)	2.004 10
HOCH ₂ CH ₂ C=CMe	HOCH ₂ CH ₂ C(O)ĊHMe	1.85	2.22(3 H)	0.185(2 H)	2.004 00
	HOCH ₂ CH ₂ CHC(O)Me	1.88	2.055(2 H)	0.19(3 H)	2.004 05
MeCH(OH)CH ₂ C=CH	MeCH(OH)CH2ĊHCHO	1.85	{2.01(2 H) 0.185(CHO)		2.004 30

^{*a*} Typically pH 1.5: in each case (except where indicated otherwise) the carbonyl-conjugated radical was only detected below pH 2. ^{*b*} \pm 0.01 mT: hyperfine splitting from one proton unless indicated otherwise. ^{*c*} \pm 0.000 05. ^{*d*} Attributed to the Z-isomer (see ref. 8). ^{*e*} Attributed to the E-isomer (see ref. 8). ^{*f*} Carbonyl-conjugated radicals detected below pH 1.8.

alkyne concentration (which gives an estimated value of 0.29 for [(1)]:[(3)]) suggests that attack of 'OH on the alkynol itself proceeds *via* both C-H abstraction and addition in the ratio *ca.* 1:3. A full kinetic analysis (see below) supports this interpretation.

Experiments at very low alkyne concentrations (to avoid intermolecular abstraction) and at higher pH (>2.5, to avoid acid-catalysed rearrangement) gave weak signals which could not be analysed, though traces of (1) were clearly present: we were unable to detect signals unambiguously associated with the vinyl radical (2) itself.

Reactions of Other Alkynes with 'OH.—Table 1 also contains details of the e.s.r. spectra of radicals obtained by reaction of 'OH with other alkynols in the pH range 1–2.5: in each case the detection of α -keto-alkyl radicals (in some cases in *cis* and *trans* forms)⁸ at low pH is believed to reflect the occurrence of acidcatalysed conversion of initial hydroxyl adducts, as for but-2yne-1,4-diol. In each case, the predominance of the α -keto radical at low pH indicates the marked preference for attack by 'OH on the triple bond rather than hydrogen abstraction. For several substrates, including HOCH₂C=CH, HOCH₂-CH₂C=CH, and MeC=CCH₂OH, radicals resulting from rearrangement of both possible hydroxyl adducts were detected (below pH 1.5 in these cases); for MeC=CCH₂CH₂OH the corresponding adducts were first detected at somewhat higher pH (ca. 2.2), which perhaps reflects the relative ease of formation of a cation radical (see later) in alkenes containing α,β -dialkyl substituents. This substrate, as with MeCH(OH)CH₂C=CH, showed no evidence for hydrogen-atom abstraction in competition with addition (and rearrangement): of those substrates for which C-H abstraction was noted at higher pH, all (except HOCH₂CH₂C=CH) possess both an hydroxyl and a vinyl substituent at the radical centre, an observation which presumably reflects the combined radical-stabilizing ability of both groups (see ref. 9 and references cited therein). For each of these substrates the marked increase in the concentration of the abstraction radical with pH (in the range 1.0-2.0) indicates that

Figure 2. Variation with pH of the concentrations of HOCHC=C-CH₂OH (\bullet) and HOCH₂COCHCH₂OH (\blacktriangle) in experiments with but-2-yne-1,4-diol (conditions as in Figure 1). Dotted lines show the simulated behaviour (for reaction mechanism and kinetic parameters, see text).

it is the first-formed vinyl radical (rather than 'OH) which is responsible for hydrogen removal.

Kinetic Analysis.-We set out first to determine the rate of reaction of HO' with but-2-yne-1,4-diol (as a model alkyne) by use of competition experiments involving methanol (whose rate of reaction with the hydroxyl radical is known).¹⁰ At low pH (ca. 0.6) and with low but-2-yne-1,4-diol concentrations $(1.5 \times 10^{-3} \text{ mol dm}^{-3})$, the vinyl radicals formed by addition of 'OH to the triple bond would be expected solely to rearrange to carbonyl-conjugated radicals, as described above. We therefore carried out experiments under these conditions in the presence of low concentrations of added methanol, and monitored concentrations of 'CH₂OH and both HOCH₂CHCOCH₂OH and HOCHC=CCH₂OH formed by direct competition for 'OH between the two substrates. On the assumptions that termination rates between these three radicals (self- and crosstermination) are identical and that the (stabilized) radical 'CH₂OH does not react with the alkynol under these con-

Figure 3. (a) Extreme low-field portion of the e.s.r. spectrum of the radical HOCH₂COCHCH₂OH. (b) Corresponding portion of the e.s.r. spectrum attributed to HOCH₂COC²HCH₂OH, obtained from 'OH and but-2-yne-1,4-diol in D_2O at pH 0.63.

ditions, it follows that the ratio of radical concentrations detected at low pH is related to the rates of 'OH attack as indicated by equation (9).

The predicted behaviour was verified in experiments with varying substrate concentrations in which the concentrations of the three radicals were monitored. The overall rate of attack on the alkyne was determined as 7.2×10^9 dm³ mol⁻¹ s⁻¹ and the absolute rate constants for the individual reactions k_6 and k_7 were calculated as 1.6×10^9 and 5.6×10^9 dm³ mol⁻¹ s⁻¹ respectively.

At higher pH, where no acid-catalysed rearrangement occurs, we were unable to detect e.s.r. signals from the intermediate vinyl radicals which we nevertheless conclude are formed in the initial reaction. We suggest that, in the absence of rearrangement, the steady-state concentration of the vinyl radicals (which must be $< ca. 10^{-7}$ mol dm⁻³, unless unforeseen line-broadening occurs) is governed not only by radical-radical reaction ($2k_t ca. 2 \times 10^9$ dm³ mol⁻¹ s⁻¹)¹¹ but also, largely, by reaction of the radical with parent compound

$$HO^{\bullet} + CH_{3}OH \xrightarrow{k_{5}} H_{2}O + {}^{\bullet}CH_{2}OH$$
 (5)

$$HO^{\bullet} + HOCH_2C \equiv CCH_2OH \xrightarrow{k_6} H_2O + HOCHC \equiv CCH_2OH$$
(6)

$$HO^{\bullet} + HOCH_2 C \equiv CCH_2 OH \xrightarrow{k_7} HOCH_2 C \equiv C^{\bullet} CH_2 OH$$

$$HO^{\bullet} + HOCH_2 C \equiv CCH_2 OH \xrightarrow{k_7} HO^{\bullet} C \equiv C^{\bullet} C = C^{$$

 $\frac{\left[{}^{\bullet}CH_{2}OH\right]}{\left[HOCH_{2}CH_{2}OH\right] + \left[HOCH_{2}C(O)CHCH_{2}OH\right]} = \frac{k_{5}\left[MeOH\right]}{(k_{6} + k_{7})\left[HOCH_{2}C \equiv CCH_{2}OH\right]}$ (9)

HOCH

Figure 4. Variation of the concentrations of HOCHC=CCH₂OH (\bullet) and HOCH₂COCHCH₂OH (\blacktriangle) with [HOCH₂C=CCH₂OH] in experiments at pH 1.15.

[presumably mainly by C-H abstraction, reaction (10), as noted earlier].

Now if an initial radical (R_1) largely decays by conversion into a secondary radical (R_2) *via* reaction with substrate S (as in this case) then steady-state analysis for $[R_2]$ leads, when $[R_1] \ll [R_2]$ to the following relationship (see *e.g.* ref. 12).

$$k_{\rm r}[{\rm R_1}^{\bullet}][{\rm S}] = 2k_{\rm t}[{\rm R_2}^{\bullet}]^2$$
 (11)

Applying this relation to reaction (10), with $2k_1 2 \times 10^9$ dm³ mol⁻¹ s⁻¹ [HOCHC=CCH₂OH] 2×10^{-6} mol dm⁻³ (as observed), [HOCH₂C=CCH₂OH] 5×10^{-3} mol dm⁻³ (the lower limit employed) and HOCH₂C(OH)=C(CH₂OH)' $\leq 10^{-7}$ mol dm⁻³ (above which it should have been detected) we conclude that k_{10} is $\geq 1.6 \times 10^7$ dm³ mol⁻¹ s⁻¹.

From the results of experiments at lower pH (1.65), in which both rearranged and abstraction radicals are detected, we calculate the ratio of rate constants for abstraction and rearrangement $(k_{10}:k_8)$ as 3.4: it follows that k_8 , the rate constant for the acid-catalysed rearrangement is $\ge 5 \times 10^6$ dm³ mol⁻¹ s⁻¹. Use of these two lower limits in a kinetic simulation program [incorporating the initiation reactions between Ti^{III} and H₂O₂, reactions (6)–(8) and (10), and both self- and cross-termination, $2k_1 \ 2 \times 10^9$ dm³ mol⁻¹ s⁻¹] led to a satisfactory agreement between observed and predicted behaviour in experiments in which pH and [alkyne] were varied (see *e.g.* Figure 2).

The marked reactivity of 'OH towards addition to but-2-yne-1,4-diol ($k 5.6 \times 10^9 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$) is not surprising in view of the radical's extremely electrophilic character, and its enhanced reactivity in C-H abstraction ($k 1.6 \times 10^9 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$), to give HOCHC=CCH₂OH, is understandable in terms of the weakening of this bond (see earlier) and the electronic effect (+M) of the hydroxy group. The inherent reactivity of the intermediate vinyl radical and the relative ease of abstraction to produce the stabilized radical (1) (and a C_{sp}-H bond)

presumably also explains the rapidity of intramolecular reaction $(k \ge 1.6 \times 10^7 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1})$. We believe that the facility of acid-catalysed transformation [reaction (8)] reflects the ease of protonation of a (vinylic) carbon atom in which negative-charge density is enhanced by the presence of the β -oxygen atom as illustrated by the contribution of canonical form (6) to the structure of the vinyl radical (2) (itself expected to be of σ -type, as illustrated). We note that the lower limit estimated for the rate constant for protonation is of the same order of magnitude reported ¹³ for the protonation at carbon of some 1-oxyallyl radical anions and pyrimidine 'OH-adducts by water (and for which increase in electron density correlates with increase in rate).

In order to obtain further corroboration of this interpretation we examined the effect of added phosphate (0.08 mol dm⁻³) on the ratio of concentrations of rearranged and abstraction radicals [(3) and (1)] at pH *ca.* 2 (it has been noted ¹³ that phosphate can bring about catalysis of related proton-transfer reactions in both acidic and basic conditions). In accord with expectation on this basis, signals from (3) were considerably enhanced [with a corresponding reduction in the concentration of (1)] under these conditions, evidently on account of the rapid protonation of (2) by H₃PO₄ and/or H₂PO₄⁻.

Reaction of Alkynols with other Radicals.—We also carried out a variety of experiments to determine whether other radicals (including Me[•], Bu[·]O[•], and RS[•]) react readily with alkynols to give spectra from adducts, or derived radicals.

There was no direct evidence that Me[•] (from [•]OH and excess of DMSO) adds to but-2-yne-1,4-diol (since no vinyl radical is detected) but enhanced signals from HOCHC=CCH₂OH in the presence of Me[•] suggest that intermolecular C-H abstraction occurs [involving either Me[•], reaction (12), or an intermediate

$$Me' + HOCH_2C \equiv CCH_2OH \longrightarrow MeH + HOCHC \equiv CCH_2OH$$
(12)

vinyl adduct]. In related experiments we were unable to obtain evidence that either 'CH₂OH or the α - and β -radicals from tetrahydrofuran (from methanol and THF, respectively, present in excess) react readily with but-2-yne-1,4-diol: in contrast, oxygen-conjugated radicals react readily by addition to butynedioic acid (to give vinyl radicals which subsequently react to give detectable secondary radicals). We calculate that k_{add} is $\leq 10^6$ dm³ mol⁻¹ s⁻¹ for the alkynol, in contrast to *ca.* 10⁷ dm³ mol⁻¹ s⁻¹ for addition to alkynoic acids,⁴ which presumably reflects the electron-withdrawing effect of the carboxyl groups in accelerating a reaction with nucleophilic oxygen-conjugated radicals.

Generation of Bu'O' from Ti^{III} and Bu'OOH led to the detection of Me' (from Bu'O') as well as HOCHC=CCH₂OH in significant concentrations: the ratio of the concentration of the two radicals was *ca.* 1:1 for [alkyne] *ca.* 0.033 mol dm³. As a steady-state approach and computer simulations show, the observed increase in the latter with [alkyne] is compatible with either or both reactions (12) and (14) being the source of this

$$Bu'O' \longrightarrow Me' + Me_2CO$$
 (13)

$$^{\mathsf{'}BuO'} + \operatorname{HOCH}_{2}C \equiv \operatorname{CCH}_{2}OH \longrightarrow$$

$$^{\mathsf{'}BuOH} + \operatorname{HO\dot{C}HC} \equiv \operatorname{CCH}_{2}OH \quad (14)$$

species. Given that k_{13} is 1.4×10^6 dm³ mol⁻¹ s⁻¹ under these circumstances ¹⁴ we calculate that a value for k_{12} of 5×10^4 dm³ mol⁻¹ s⁻¹ or for k_{14} of 5×10^7 dm³ mol⁻¹ s⁻¹ would account for the observed behaviour.

For a variety of carboxy-substituted thiols of the structure $R^{1}CH(CO_{2}H)SH$, reaction with 'OH [which is believed¹ to give $R^1CH(CO_2H)S'$ in the presence of a series of alkynols (with typical concentrations of thiol and alkyne 0.01 and 0.05 mol dm³, respectively) led to the detection of radicals whose parameters in each case establish the presence of thioalkyl and carboxy substituents at the radical centre (the structures are shown in Table 2). The reaction mechanism (see Scheme 3) is believed to involve addition of thiyl radicals to the triple bond, followed by 1,4-shift of hydrogen, assisted (we presume) by the strength of the C-H bond formed and the stabilizing (captodative) effect ¹⁵ of the +M and -M substituents at the new radical centre (the resultant exothermicity is expected 1 to be *ca*. 80 kJ mol⁻¹). The rearrangement, which is estimated to have kca. 10^5 s⁻¹ (see ref. 1), is presumably favoured by the ease of achieving a transition state in which the long C-S bonds (ca. 0.18 nm) and small CSC (ca. 100°) allow close approach of the radical centre and δ -hydrogen.

Conclusions

Although alkynols appear to be somewhat less reactive than butynedioic acid to alkyl and hydroxyalkyl radicals (but not HO[•] or sulphur-centred radicals), the vinyl radicals which result from radical addition (and which presumably share the σ structure of the vinyl radical itself¹⁶) are particularly reactive in inter- and intra-molecular reactions. Examples studied include intermolecular abstraction of hydrogen from a C–H bond in alkynols ($k \ge 10^7$ dm³ mol⁻¹ s⁻¹) and a 1,4-shift (k ca. 10⁵ s⁻¹) in β -sulphur-substituted radicals in which the resultant radical is stabilized by conjugation to sulphur and a carboxyl group. Evidence for rapid protonation (of the α -carbon atom) of β hydroxyvinyl radicals, and its catalysis by phosphate, has also been obtained, a result which is believed to reflect the importance of negative charge density in governing the rate of protonation.

Experimental

E.s.r. spectra were recorded on Bruker ESP 300 and Varian E-104 spectrometers each equipped with X-band microwave bridges and 100 KHz modulation. Hyperfine splittings and gvalues were determined directly from the spectrometer's field scans, these having been calibrated with the signal from Fremy's salt $[a_N = 1.3091 \text{ mT},^{17} \text{ g } 2.0055^{18}]$. Radical concentrations were determined by comparison with spectra obtained from standard solutions of vanadyl sulphate by use of double integration with the Bruker ESP 300. A mixing chamber was employed which allowed simultaneous mixing of three reagent streams ca. 30 ms before passage through the cavity of the spectrometer: the flow was maintained using a Watson-Marlow 502S peristaltic pump placed on the inlet tubing. pH measurements were made using a Pye-Unicam PW9410 pH meter with the electrode inserted into the effluent stream. The three solutions typically contained (i) titanium(III) chloride $(0.005 \text{ mol } \text{dm}^{-3})$, (*ii*) hydrogen peroxide (0.025 mol $\text{dm}^{-3})$ and (*iii*) the alkyne (0.02 mol dm^{-3}); pH was varied by addition of sulphuric acid (18 mol dm⁻³) or sodium hydroxide (10 mol dm⁻³) to the first stream and all solutions were deoxygenated by a nitrogen purge both before, and during use. In some experiments, sodium dihydrogenphosphate (0.25 mol dm⁻³) was added to the first stream.

Spectrum simulations were carried out using a program originally written by Dr. M. F. Chiu modified to run on a VAX mainframe computer. The kinetic simulation program, executed on the VAX computer, was originally written by Dr. T. M. F. Salmon and modified by Dr. M. J. Brown.

All chemicals employed were commercial samples used as supplied.

Table 2. E.s.r. parameters^{*a*} of α -thioalkyl- α -carboxyl radicals^{*b*} derived from addition of R¹CH(CO₂H)S[•] to R²C=CR³.

Thiyl radical R ¹	Alkynol		Hyperfine splittings/mT		
	R ²	R ³	$a(\mathbf{R}^1)$	a (other)	g
Н	HOCH,	HOCH,	1.36(1 H)	0.14(1 H, 2 H)	2.005
Me	HOCH	HOCH	1.59(3 H)		2.0052
CH ₂ CO ₂ H	HOCH	HOCH	0.93(2 H)		2.0050
Н	HOCHMe	HOCHMe	1.36(1 H)	0.14(1 H)	2.005
Me	HOCHMe	HOCHMe	1.59(3 H)	× ,	2.0053
CH ₂ CO ₂ H	HOCHMe	HOCHMe	0.86(2 H)		2.005
H	Н	HOCHMeCH ₂	1.35(1 H)	0.18(2 H)	2.004
0 0001 ^b Proposed	structure (8) (9	Scheme 3)			

^{*a*} h.f.s. ± 0.05 mT, $g \pm 0.0001$. ^{*b*} Proposed structure, (8) (Scheme 3).

Acknowledgements

We thank Dr. S. Steenken for helpful and stimulating discussions and the SERC for support.

References

- 1 B. C. Gilbert, D.J. Parry, and L. Grossi, J. Chem. Soc., Faraday Trans. 1, 1987, 83, 77.
- 2 B. C. Gilbert and D. J. Parry, J. Chem. Soc., Perkin Trans. 2, 1988, 875.
- 3 B. C. Gilbert and D. J. Parry, J. Chem. Soc., Perkin Trans. 2, 1986, 1345.
- 4 B. C. Gilbert, N. R. McLay, and D. J. Parry, J. Chem. Soc., Perkin Trans. 2, 1987, 329.
- 5 W. T. Dixon, J. Foxall, G. H. Williams, D. J. Edge, B. C. Gilbert, H. Kazarians-Moghaddam, and R. O. C. Norman, J. Chem. Soc., Perkin Trans. 2, 1977, 827.
- 6 M. J. Davies, B. C. Gilbert, and S. Steenken, J. Chem. Soc., Perkin Trans. 2, 1986, 1003.
- 7 B. C. Gilbert and A. C. Whitwood, J. Chem. Res. (S), 1987, 416.
- 8 S. Steenken, G. Behrens, and D. Schulte-Frohlinde, Int. J. Radiat. Biol., 1974, 25, 205.

- 9 I. MacInnes and J. C. Walton, J. Chem. Soc., Perkin Trans. 2, 1987, 1077.
- 10 See e.g. Farhataziz and A. B. Ross, 'Selected Specific Rates of Reactions of Transients from Water in Aqueous Solution. III. Hydroxy Radicals and Perhydroxyl Radicals and their Radical Ions,' National Standard Reference Data Services, National Bureau of Standards, Washington, DC 1977.
- 11 P. Neta, Adv. Phys. Org. Chem., 1976, 12, 223.
- 12 A. L. J. Beckwith and P. K. Tindal, Aust. J. Chem., 1971, 24, 2099.
- 13 H. M. Novais and S. Steenken, J. Am. Chem. Soc., 1986, 108, 1; R. H. Schuler, P. Neta, H. Zemel, and R. W. Fessenden, *ibid.*, 1976, 98, 3825.
- 14 M. Erben-Russ, C. Michel, W. Bors, and M. Saran, J. Phys. Chem., 1987, 91, 2362.
- 15 H. G. Viehe, Z. Janousek, R. Merényi, and L. Stella, Acc. Chem. Res., 1985, 18, 148.
- 16 R. W. Fessenden and R. H. Schuler, J. Chem. Phys., 1963, 39, 2147.
- 17 R. J. Faber and G. K. Fraenkel, J. Chem. Phys., 1967, 47, 2462.
- 18 J. Q. Adams, S. W. Nicksic, and J. R. Thomas, J. Chem. Phys., 1966, 45, 654.

Received 23rd May 1989; Paper 902163I